kelas:10 tkj
no :07
1.nilai resistot yang ada dipasaran adalah ; 10R,12R,15R,18R,22R,27R,33R,39R,47R,56R,68R,82R,100R,120R,150R,180R,220R,270R,330R,390R,470R
560R,680R,820R.
2.rumus ketahanan adalah R =V:I
Rumus daya adalah P=V.I
3.xc=1:2 πfc
4.rumus seri pada resistor adalah R=R1+R2+………
5.rumus seri pada kapasitor R=R1+R2+R3+…..
6.kesimpulan pada rangkaian seri pada resistor adalah lebih besar sari nilai yang terbesar
7.kesimpulan pada rangkaian pararel pada resistor adalah lebih kecil dari nilai yang terkecil
8.contoh resistor coklat,merah,merah ,tak berwarna
12x100=1200 dengan tolerasi 20%
Induktor
Induktor
Electronic component inductors.jpg
Beberapa jenis induktor harga rendah.
Simbol
Inductor.svg
Tipe
Pasif
Pembuatan pertama
Michael Faraday(1831)
Kotak ini: lihat • bicara
Sebuah induktor atau reaktor adalah sebuah komponen elektronika pasif (kebanyakan berbentuk torus) yang dapat menyimpan energi pada medan magnet yang ditimbulkan oleh arus listrik yang melintasinya. Kemampuan induktor untuk menyimpan energi magnet ditentukan oleh induktansinya, dalam satuan Henry. Biasanya sebuah induktor adalah sebuah kawat penghantar yang dibentuk menjadi kumparan, lilitan membantu membuat medan magnet yang kuat didalam kumparan dikarenakan hukum induksi Faraday. Induktor adalah salah satu komponen elektronik dasar yang digunakan dalam rangkaian yang arus dan tegangannya berubah-ubah dikarenakan kemampuan induktor untuk memproses arus bolak-balik.
Sebuah induktor ideal memiliki induktansi, tetapi tanpa resistansi atau kapasitansi, dan tidak memboroskan daya. Sebuah induktor pada kenyataanya merupakan gabungan dari induktansi, beberapa resistansi karena resistivitas kawat, dan beberapa kapasitansi. Pada suatu frekuensi, induktor dapat menjadi sirkuit resonansi karena kapasitas parasitnya. Selain memboroskan daya pada resistansi kawat, induktor berinti magnet juga memboroskan daya didalam inti karena efek histeresis, dan pada arus tinggi mungkin mengalami nonlinearitas karena penjenuhan.
Fisika
Induktansi (L) (diukur dalam Henry) adalah efek dari medan magnet yang terbentuk disekitar konduktor pembawa arus yang bersifat menahan perubahan arus. Arus listrik yang melewati konduktor membuat medan magnet sebanding dengan besar arus. Perubahan dalam arus menyebabkan perubahan medan magnet yang mengakibatkan gaya elektromotif lawan melalui GGL induksi yang bersifat menentang perubahan arus. Induktansi diukur berdasarkan jumlah gaya elektromotif yang ditimbulkan untuk setiap perubahan arus terhadap waktu. Sebagai contoh, sebuah induktor dengan induktansi 1 Henry menimbulkan gaya elektromotif sebesar 1 volt saat arus dalam indukutor berubah dengan kecepatan 1 ampere setiap sekon. Jumlah lilitan, ukuran lilitan, dan material inti menentukan induktansi.
Faktor Q
Sebuah induktor ideal tidak menimbulkan kerugian terhadap arus yang melewati lilitan. Tetapi, induktor pada umumnya memiliki resistansi lilitan dari kawat yang digunakan untuk lilitan. Karena resistansi lilitan terlihat berderet dengan induktor, ini sering disebut resistansi deret. Resistansi deret induktor mengubah arus listrik menjad bahang, yang menyebabkan pengurangan kualitas induktif. Faktor kualitas atau "Q" dari sebuah induktor adalah perbandingan reaktansi induktif dan resistansi deret pada frekuensi tertentu, dan ini merupakan efisiensi induktor. Semakin tinggi faktor Q dari induktor, induktor tersebut semakin mendekati induktor ideal tanpa kerugian.
Faktor Q dari sebuah induktor dapat diketahui dari rumus berikut, dimana R merupakan resistansi internal dan ωL adalah resistansi kapasitif atau induktif pada resonansi:
Q = \frac{\omega{}L}{R}
Dengan menggunakan inti feromagnetik, induktansi dapat ditingkatkan untuk jumlah tembaga yang sama, sehingga meningkatkan faktor Q. Inti juga memberikan kerugian pada frekuensi tinggi. Bahan inti khusus dipilih untuk hasil terbaik untuk jalur frekuensi tersebut. Pada VHF atau frekuensi yang lebih tinggi, inti udara sebaiknya digunakan.
Lilitan induktor pada inti feromagnetik mungkin jenuh pada arus tinggi, menyebabkan pengurangan induktansi dan faktor Q yang sangat signifikan. Hal ini dapat dihindari dengan menggunakan induktor inti udara. Sebuah induktor inti udara yang didesain dengan baik dapat memiliki faktor Q hingga beberapa ratus.
Sebuah kondensator nyaris ideal (faktor Q mendekati tak terhingga) dapat dibuat dengan membuat lilitan dari kawat superkonduktor pada helium atau nitrogen cair. Ini membuat resistansi kawat menjadi nol. Karena induktor superkonduktor hampir tanpa kerugian, ini dapat menyimpan sejumlah besar energi listrik dalam lilitannya.
Penggunaan
Induktor dengan dua lilitan 47mH, sering dijumpai pada pencatu daya.
Induktor sering digunakan pada sirkuit analog dan pemroses sinyal. Induktor berpasangan dengan kondensator dan komponen lain membentuk sirkuit tertala. Penggunaan induktor bervariasi dari penggunaan induktor besar pada pencatu daya untuk menghilangkan dengung pencatu daya, hingga induktor kecil yang terpasang pada kabel untuk mencegah interferensi frekuensi radio untuk dprd melalui kabel. Kombinasi induktor-kondensator menjadi rangkaian tala dalam pemancar dan penerima radio. Dua induktor atau lebih yang terkopel secara magnetik membentuk transformator.
Induktor digunakan sebagai penyimpan energi pada beberapa pencatu daya moda sakelar. Induktor dienergikan selama waktu tertentu, dan dikuras pada sisa siklus. Perbandingan transfer energi ini menentukan tegangan keluaran. Reaktansi induktif XL ini digunakan bersama semikonduktor aktif untuk menjaga tegangan dengan akurat. Induktor juga digunakan dalam sistem transmisi listrik, yang digunakan untuk mengikangkan paku-paku tegangan yang berasal dari petir, dan juga membatasi arus pensakelaran dan arus kesalahan. Dalam bidang ini, indukutor sering disebut dengan reaktor.
Induktor yang memiliki induktansi sangat tinggi dapat disimulasikan dengan menggunakan girator.
Konstruksi induktor
Induktor, skala dalam sentimeter.
Sebuah induktor biasanya dikonstruksi sebagai sebuah lilitan dari bahan penghantar, biasanya kawat tembaga, digulung pada inti magnet berupa udara atau bahan feromagnetik. Bahan inti yang mempunyai permeabilitas magnet yang lebih tinggi dari udara meningkatkan medan magnet dan menjaganya tetap dekat pada induktor, sehingga meningkatkan induktansi induktor. Induktor frekuensi rendah dibuat dengan menggunakan baja laminasi untuk menekan arus eddy. Ferit lunak biasanya digunakan sebagai inti pada induktor frekuensi tingi, dikarenakan ferit tidak menyebabkan kerugian daya pada frekuensi tinggi seperti pada inti besi. Ini dikarenakan ferit mempunyai lengkung histeresis yang sempit dan resistivitasnya yang tinggi mencegah arus eddy. Induktor dibuat dengan berbagai bentuk. Sebagian besar dikonstruksi dengan menggulung kawat tembaga email disekitar bahan inti dengan kaki-kali kawat terlukts keluar. Beberapa jenis menutup penuh gulungan kawat didalam material
inti, dinamakan induktor terselubungi. Beberapa induktor mempunyai inti yang dapat diubah letaknya, yang memungkinkan pengubahan induktansi. Induktor yang digunakan untuk menahan frekuensi sangat tinggi biasanya dibuat dengan melilitkan tabung atau manik-manik ferit pada kabel transmisi.
Induktor kecil dapat dicetak langsung pada papan rangkaian cetak dengan membuat jalur tembaga berbentuk spiral. Beberapa induktor dapat dibentuk pada rangkaian terintegrasi menhan menggunakan inti planar. Tetapi bentuknya yang kecil membatasi induktansi. Dan girator dapat menjadi pilihan alternatif.
Jenis-jenis lilitan
Lilitan ferit sarang madu
Lilitan sarang madu dililit dengan cara bersilangan untuk mengurangi efek kapasitansi terdistribusi. Ini sering digunakan pada rangkaian tala pada penerima radio dalam jangkah gelombang menengah dan gelombang panjang. Karena konstruksinya, induktansi tinggi dapat dicapai dengan bentuk yang kecil.
Lilitan inti toroid
Sebuah lilitan sederhana yang dililit dengan bentuk silinder menciptakan medan magnet eksternal dengan kutub utara-selatan. Sebuah lilitan toroid dapat dibuat dari lilitan silinder dengan menghubungkannya menjadi berbentuk donat, sehingga menyatukan kutub utara dan selatan. Pada lilitan toroid, medan magnet ditahan pada lilitan. Ini menyebabkan lebih sedikit radiasi magnetik dari lilitan, dan kekebalan dari medan magnet eksternal.
Rumus induktansi
Konstruksi
Rumus
Besaran (SI, kecuali disebutkan khusus)
Lilitan silinder
L=\frac{\mu_0KN^2\pi r^2}{l}
* L = induktansi
* μ0 = permeabilitas vakum
* K = koefisien Nagaoka
* N = jumlah lilitan
* r = jari-jari lilitan
* l = panjang lilitan
Kawat lurus
L =200 \, l \left(\ln\frac{4l}{d}-1\right)10^{-9}
* L = induktansi
* l = panjang kawat
* d = diameter kawat
Lilitan silinder pendek berinti udara
L=\frac{r^2N^2}{9r+10l}
* L = induktansi (µH)
* r = jari-jari lilitan (in)
* l = panjang lilitan (in)
* N = jumlah lilitan
Lilitan berlapis-lapis berinti udara
L = \frac{0.8r^2N^2}{6r+9l+10d}
* L = induktansi (µH)
* r = rerata jari-jari lilitan (in)
* l = panjang lilitan (in)
* N = jumlah lilitan
* d = tebal lilitan (in)
Lilitan spiral datar berinti udara
L=\frac{r^2N^2}{(2r+2.8d) \times 10^5}
* L = induktansi
* r = rerata jari-jari spiral
* N = jumlah lilitan
* d = tebal lilitan
Inti toroid
L=\mu_0\mu_r\frac{N^2r^2}{D}
* L = induktansi
* μ0 = permeabilitas vakum
* μr = permeabilitas relatif bahan inti
* N = jumlah lilitan
* r = jari-jari gulungan
* D = diameter keseluruhan
Dalam sirkuit elektrik
Sebuah induktor menolak perubahan arus. Sebuah induktor ideal tidak menunjukkan resistansi kepada arus rata, tetapi hanya induktor superkonduktor yang benar-benar memiliki resistansi nol. Pada umumnya, hubungan antara perubahan tegangan, induktansi, dan perubahan arus pada induktor ditentukan oleh rumus diferensial:
v(t) = L \frac{di(t)}{dt}
Jika ada arus bolak-balik sinusoida melalui sebuah induktor, tegangan sinusoida diinduksikan. Amplitudo tegangan sebanding dengan amplitudo arus dan frekuensi arus.
i(t) = I_P \sin(2 \pi f t)\,
\frac{di(t)}{dt} = 2 \pi f I_P \cos(2 \pi f t)
v(t) = 2 \pi f L I_P \cos(2 \pi f t)\,
Pada situasi ini, fasa dari gelombang arus tertinggal 90 dari fasa gelombang tegangan.
Jika sebuah induktor disambungkan ke sumber arus searah, dengan harga "I" melalui sebuah resistansi "R" dan sumber arus berimpedansi nol, persamaan diferensial diatas menunjukkan bahwa arus yang melalui induktor akan dibuang secara eksponensial:
\ i(t) = I (e^{\frac{-tR}{L}})
Analisis sirkuit Laplace (s-domain)
Ketika menggunakan analisis sirkuit transformasi Laplace, impedansi pemindahan dari induktor ideal tanpa arus sebelumnya ditunjukkan dalam domain s oleh:
Z(s) = Ls\,
dimana
L adalah induktansi
s adalah frekuensi kompleks
Jika induktor telah memiliki arus awal, ini dapat ditunjukkan dengan:
* menambahkan sumber tegangan berderet dengan induktor dengan harga:
L I_0 \,
(Pegiatikan bahwa sumber tegangan harus berlawanan kutub dengan arus awal)
* atau dengan menambahkan sumber arus berjajar dengan induktor, dengan harga:
\frac{I_0}{s}
dimana
L adalah induktansi
I0 adalah arus awal
Jejaring induktor
Induktor dalam konfigurasi kakap memiliki beda potensial yang sama. Untuk menemukan induktansi ekivalen total (Leq):
diagram induktor jajar
\frac{1}{L_\mathrm{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n}
Arus dalam induktor deret adalah sama, tetapi tegangan yang membentangi setiap induktor bisa berbeda. Penjumlahan dari beda potensial dari beberapa induktor seri sama dengan tegangan total. Untuk menentukan todu total digunakan rumus:
diagram induktor deret
L_\mathrm{eq} = L_1 + L_2 + \cdots + L_n \,\!
Hubungan tersebut hanya benar jika tidak ada kopling magnetis antar kumparan.
Energi yang tersimpan
Energi yang tersimpan di induktor ekivalen dengan usaha yang dibutuhkan untuk mengalirkan arus melalui induktor, dan juga medan magnet:
E_\mathrm{stored} = {1 \over 2} L I^2
Dimana L adalah induktansi dan I adalah arus yang melalui induktor.
Kondensator atau sering disebut sebagai kapasitor adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator memiliki satuan yang disebut Farad dari nama Michael Faraday. Kondensator juga dikenal sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini. Pertama disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Itali condensatore), berkenaan dengan kemampuan alat untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya. Kebanyakan bahasa dan negara yang tidak menggunakan bahasa Inggris masih mengacu pada perkataan bahasa Italia "condensatore", bahasa Perancis condensateur, Indonesia dan Jerman Kondensator atau Spanyol Condensador.
* Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.
Polarized kondensator symbol 3.jpgLambang kondensator (mempunyai kutub) pada skema elektronika.
* Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju.
Capacitor symbol.jpgLambang kapasitor (tidak mempunyai kutub) pada skema elektronika.
Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar. Pada masa kini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu elektronika disingkat dengan huruf (C).
Kapasitansi
Satuan dari kapasitansi kondensator adalah Farad (F). Namun Farad adalah satuan yang terlalu besar, sehingga digunakan:
* Pikofarad (pF) = 1\times10^{-12}\,F
* Nanofarad (nF) = 1\times10^{-9}\,F
* Microfarad (\mu\,F) = 1\times10^{-6}\,F
Kapasitansi dari kondensator dapat ditentukan dengan rumus:
C=\epsilon_0\epsilon_r\frac{A}{d}
C : Kapasitansi
ε0 : permitivitas hampa
εr : permitivitas relatif
A : luas pelat
d :jarak antar pelat/tebal dielektrik
Adapun cara memperbesar kapasitansi kapasitor atau kondensator dengan jalan:
1. Menyusunnya berlapis-lapis.
2. Memperluas permukaan variabel.
3. Memakai bahan dengan daya tembus besar.
Resistor adalah komponen elektronik dua saluran yang didesain untuk menahan arus listrik dengan memproduksi penurunan tegangan diantara kedua salurannya sesuai dengan arus yang mengalirinya, berdasarkan hukum Ohm:
\begin{align}V&=IR\\ I&=\frac{V}{R}\end{align}
Resistor digunakan sebagai bagian dari jejaring elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).
Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat diboroskan. Karakteristik lain termasuk koefisien suhu, desah listrik, dan induktansi.
Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, resistor harus cukup besar secara fisik agar tidak menjadi terlalu panas saat memboroskan daya.
Satuan
Ohm (simbol: Ω) adalah satuan SI untuk resistansi listrik, diambil dari nama George Simon Ohm. Biasanya digunakan prefix miliohm, kiloohm dan megaohm.
Konstruksi
Komposisi karbon
Resistor komposisi karbon terdiri dari sebuah unsur resistif berbentuk tabung dengan kawat atau tutup logam pada kedua ujungnya. Badan resistor dilindungi dengan cat atau plastik. Resistor komposisi karbon lawas mempunyai badan yang tidak terisolasi, kawat penghubung dililitkan disekitar ujung unsur resistif dan kemudian disolder. Resistor yang sudah jadi dicat dengan kode warna dari harganya.
Unsur resistif dibuat dari campuran serbuk karbon dan bahan isolator (biasanya keramik). Resin digunakan untuk melekatkan campuran. Resistansinya ditentukan oleh perbandingan dari serbuk karbon dengan bahan isolator. Resistor komposisi karbon sering digunakan sebelum tahun 1970-an, tetapi sekarang tidak terlalu populer karena resistor jenis lain mempunyai karakteristik yang lebih baik, seperti toleransi, kemandirian terhadap tegangan (resistor komposisi karbon berubah resistansinya jika dikenai tegangan lebih), dan kemandirian terhadap tekanan/regangan. Selain itu, jika resistor menjadi lembab, bahang dari solder dapat mengakibatkan perubahan resistansi yang tak dapat dikembalikan.
Walaupun begitu, resistor ini sangat reliabel jika tidak pernah diberikan tegangan lebih ataupun panas lebih.
Resistor ini masih diproduksi, tetapi relatif cukup mahal. Resistansinya berkisar antara beberapa miliohm hingga 22 MOhm.
Film karbon
Selapis film karbon diendapkan pada selapis substrat isolator, dan potongan memilin dibuat untuk membentuk jalur resistif panjang dan sempit. Dengan mengubah lebar potongan jalur, ditambah dengan resistivitas karbon (antara 9 hingga 40 µΩ-cm) dapat memberikan resistansi yang lebar[1]. Resistor film karbon memberikan rating daya antara 1/6 W hingga 5 W pada 70 °C. Resistansi tersedia antara 1 ohm hingga 10 MOhm. Resistor film karbon dapat bekerja pada suhu diantara -55 °C hingga 155 °C. Ini mempunyai tegangan kerja maksimum 200 hingga 600 volt[2].
Film logam
Unsur resistif utama dari resistor foil adalah sebuah foil logam paduan khusus setebal beberapa mikrometer.
Resistor foil merupakan resistor dengan presisi dan stabilitas terbaik. Salah satu parameter penting yang mempengaruhi stabilitas adalah koefisien temperatur dari resistansi (TCR). TCR dari resistor foil sangat rendah. Resistor foil ultra presisi mempunyai TCR sebesar 0.14ppm/°C, toleransi ±0.005%, stabilitas jangka panjang 25ppm/tahun, 50ppm/3 tahun, stabilitas beban 0.03%/2000 jam, EMF kalor 0.1μvolt/°C, desah -42dB, koefisien tegangan 0.1ppm/V, induktansi 0.08μH, kapasitansi 0.5pF[3].
Penandaan resistor
Resistor aksial biasanya menggunakan pola pita warna untuk menunjukkan resistansi. Resistor pasang-permukaan ditandas secara numerik jika cukup besar untuk dapat ditandai, biasanya resistor ukuran kecil yang sekarang digunakan terlalu kecil untuk dapat ditandai. Kemasan biasanya cokelat muda, cokelat, biru, atau hijau, walaupun begitu warna lain juga mungkin, seperti merah tua atau abu-abu.
Resistor awal abad ke-20 biasanya tidak diisolasi, dan dicelupkan ke cat untuk menutupi seluruh badan untuk pengkodean warna. Warna kedua diberikan pada salah satu ujung, dan sebuah titik (atau pita) warna di tengah memberikan digit ketiga. Aturannya adalah "badan, ujung, titik" memberikan urutan dua digit resistansi dan pengali desimal. Toleransi dasarnya adalah ±20%. Resistor dengan toleransi yang lebih rapat menggunakan warna perak (±10%) atau emas (±5%) pada ujung lainnya.
Identifikasi empat pita
Identifikasi empat pita adalah skema kode warna yang paling sering digunakan. Ini terdiri dari empat pita warna yang dicetak mengelilingi badan resistor. Dua pita pertama merupakan informasi dua digit harga resistansi, pita ketiga merupakan pengali (jumlah nol yang ditambahkan setelah dua digit resistansi) dan pita keempat merupakan toleransi harga resistansi. Kadang-kadang pita kelima menunjukkan koefisien suhu, tetapi ini harus dibedakan dengan sistem lima warna sejati yang menggunakan tiga digit resistansi.
Sebagai contoh, hijau-biru-kuning-merah adalah 56 x 104Ω = 560 kΩ ± 2%. Deskripsi yang lebih mudah adalah: pita pertama, hijau, mempunyai harga 5 dan pita kedua, biru, mempunyai harga 6, dan keduanya dihitung sebagai 56. Pita ketiga,kuning, mempunyai harga 104, yang menambahkan empat nol di belakang 56, sedangkan pita keempat, merah, merupakan kode untuk toleransi ± 2%, memberikan nilai 560.000Ω pada keakuratan ± 2%.
Warna
Pita pertama
Pita kedua
Pita ketiga
(pengali)
Pita keempat
(toleransi)
Pita kelima
(koefisien suhu)
Hitam
0
0
× 100
Cokelat
1
1
×101
± 1% (F)
100 ppm
Merah
2
2
× 102
± 2% (G)
50 ppm
Oranye
3
3
× 103
15 ppm
Kuning
4
4
× 104
25 ppm
Hijau
5
5
× 105
± 0.5% (D)
Biru
6
6
× 106
± 0.25% (C)
Ungu
7
7
× 107
± 0.1% (B)
Abu-abu
8
8
× 108
± 0.05% (A)
Putih
9
9
× 109
Emas
× 10-1
± 5% (J)
Perak
× 10-2
± 10% (K)
Kosong
± 20% (M)
Identifikasi lima pita
Identifikasi lima pita digunakan pada resistor presisi (toleransi 1%, 0.5%, 0.25%, 0.1%), untuk memberikan harga resistansi ketiga. Tiga pita pertama menunjukkan harga resistansi, pita keempat adalah pengali, dan yang kelima adalah toleransi. Resistor lima pita dengan pita keempat berwarna emas atau perak kadang-kadang diabaikan, biasanya pada resistor lawas atau penggunaan khusus. Pita keempat adalah toleransi dan yang kelima adalah koefisien suhu.
Resistor pasang-permukaan
Gambar ini menunjukan empat resistor pasang permukaan (komponen pada kiri atas adalah kondensator) termasuk dua resistor nol ohm. Resistor nol ohm sering digunakan daripada lompatan kawat sehingga dapat dipasang dengan mesin pemasang resistor.
Resistor pasang-permukaan dicetak dengan harga numerik dengan kode yang mirip dengan kondensator kecil. Resistor toleransi standar ditandai dengan kode tiga digit, dua pertama menunjukkan dua angka pertama resistansi dan angka ketiga menunjukkan pengali (jumlah nol). Contoh:
"334"
= 33 × 10.000 ohm = 330 KOhm
"222"
= 22 × 100 ohm = 2,2 KOhm
"473"
= 47 × 1,000 ohm = 47 KOhm
"105"
= 10 × 100,000 ohm = 1 MOhm
Resistansi kurang dari 100 ohm ditulis: 100, 220, 470. Contoh:
"100"
= 10 × 1 ohm = 10 ohm
"220"
= 22 × 1 ohm = 22 ohm
Kadang-kadang harga-harga tersebut ditulis "10" atau "22" untuk mencegah kebingungan.
Resistansi kurang dari 10 ohm menggunakan 'R' untuk menunjukkan letak titik desimal. Contoh:
"4R7"
= 4.7 ohm
"0R22"
= 0.22 ohm
"0R01"
= 0.01 ohm
Resistor presisi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh:
"1001"
= 100 × 10 ohm = 1 kohm
"4992"
= 499 × 100 ohm = 49,9 kohm
"1000"
= 100 × 1 ohm = 100 ohm
"000" dan "0000" kadang-kadang muncul bebagai harga untuk resistor nol ohm
Tidak ada komentar:
Posting Komentar